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Abstract

We analyze the regularity and convergence of the solutions of linear parabolic
problems when some reaction and potential terms are concentrated in a neighbor-
hood of a portion Γ of the boundary and this neighborhood shrinks to Γ as a
parameter ε goes to zero.

1 Introduction

Let Ω be an open bounded smooth set in IRN with a C2 boundary ∂Ω. Let Γ ⊂ ∂Ω
be a smooth subset of the boundary, isolated from the rest of the boundary, that is,
dist(Γ, ∂Ω \ Γ) > 0. Define the strip of width ε and base Γ as

ωε = {x − σ~n(x), x ∈ Γ, σ ∈ [0, ε)}

for sufficiently small ε, say 0 < ε < ε0, where ~n(x) denotes the outward normal vector to
Γ. We note that for small ε, the set ωε is a neighborhood of Γ in Ω, that collapses to Γ
when the parameter ε goes to zero.

It was recently proved in [5], in the context of elliptic problems, that boundary poten-
tials for Robin boundary conditions in Γ can be efficiently approximated by concentrating
potentials in ωε.
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Figure 1: The sets Ω and ωε

Hence our goal in this paper is to extend such analysis to linear parabolic equations.
To be more precise, we are interested in the behavior, for small ε, of the solutions of the
linear parabolic problem



















uε
t − div(a(x)∇uε) + c(x)uε = 1

ε
XωεVε(x)uε + f(x) + 1

ε
Xωεhε(x) in Ω

a(x)∂uε

∂~n
+ b(x)uε = 0 on Γ

Buε = 0 on ∂Ω \ Γ
uε(0) = u0 in Ω

where a ∈ C1(Ω) with a(x) ≥ a0 > 0 in Ω, c ∈ C1(Ω) and B denotes the boundary
operator in ∂Ω \ Γ

Bu = u, Dirichlet case, or Bu = a(x)
∂u

∂~n
+ b(x)u, Robin case,

being ~n the outward normal vector-field to ∂Ω \ Γ and b(x) a C1(∂Ω) function and Xωε

denotes the characteristic function of the set ωε.
Note that in this problem some terms are only effective on the region ωε which collapses

to Γ as ε → 0.
We will show in this paper that the “limit problem” for the singularly perturbed

problem above is given by



















ut − div(a(x)∇u) + c(x)u = f(x) in Ω
a(x)∂u

∂~n
+ b(x)u = V0(x)u + h0(x) on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω
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where h0, V0 are obtained as the limits of the concentrating terms

1

ε
Xωεhε → h0,

1

ε
XωεVε → V0,

in some sense that we now make precise. For this, we have the following definition.

Definition 1.1 Consider a family of functions J = {jε}ε in Ω.
i) The family J is denoted an “Lr–concentrated bounded family” near Γ, if

1

ε

∫

ωε

|jε|
r ≤ C

for 1 ≤ r < ∞, or
sup
x∈ωε

|jε(x)| ≤ C

for the case r = ∞, and C a positive constant independent of ε.
ii) The family J is an “Lr–concentrated convergent family” if it satisfies that for any
smooth function ϕ in Ω, we have

lim
ε→0

1

ε

∫

ωε

jεϕ =
∫

Γ
j0ϕ, (1.1)

where j0 ∈ Lr(Γ) (or a bounded Radon measure on Γ, j0 ∈ M(Γ) if r = 1). In such a
case we write

1

ε
Xωεjε → j0 cc − Lr.

iii) The family J is said to be “Lr–concentrated (sequentially) compact family” if for any
sequence in the family there exist a subsequence (that we still denote the same) and a
function j0 ∈ Lr(Γ) (or a bounded Radon measure on Γ, j0 ∈ M(Γ) if r = 1) such that
for any smooth function ϕ in Ω, we have (1.1).

Therefore the results of Lemma 2.2 in [5] can be recast as

Lemma 1.2 With the notations above, an “Lr–concentrated bounded family” is an “Lr–
concentrated (sequentially) compact family”.

Hence, we will assume that

1

ε
Xωεhε → h0,

1

ε
XωεVε → V0, cc − Lr for some r > N − 1. (1.2)

On the other hand, because of it interest in applicatons, we are also interested in deal-
ing with non smooth potentials in Ω and Γ, therefore we consider here the homogeneous
problems



















uε
t − div(a(x)∇uε) + c(x)uε = m(x)uε + 1

ε
XωεVε(x)uε in Ω

a(x)∂uε

∂~n
+ b(x)uε = m0(x)uε on Γ

Buε = 0 on ∂Ω \ Γ
uε(0) = u0 in Ω

(1.3)
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and


















ut − div(a(x)∇u) + c(x)u = m(x)u in Ω
a(x)∂u

∂~n
+ b(x)u = (m0(x) + V0(x))u on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω

(1.4)

with m ∈ Lp(Ω), p > N/2 and m0 ∈ Lr(Γ), r > N − 1.
Therefore, our goal is to analyze regularity of solutions of (1.3) and (1.4) and to show

that solutions of the former converge to solutions of the latter, assumed that (1.2) holds.
More precisely, we are going to prove, among others, the following three main results.

Theorem 1.3 Assume that m lies in a bounded set in Lp(Ω), with p > N/2, m0 lies
in a bounded set in Lr(Γ) and also that the family of potentials Vε is a Lr–concentrated
bounded family, for r > N − 1, that is

1

ε

∫

ωε

|Vε|
r ≤ C, r > N − 1.

Then, for any 1 < q < ∞, the problem (1.3) defines a strongly continuous, order
preserving, analytic semigroup, Sm,m0,ε(t) in the space H2γ,q

bc (Ω) for any

γ ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
).

Moreover the semigroup satisfies the smoothing estimates

‖Sm,m0,ε(t)u0‖H2γ′,q
bc

(Ω)
≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

for every γ, γ′ ∈ I(q), with γ′ ≥ γ, for some Mγ′,γ and µ ∈ IR independent of m, m0 and
0 < ε ≤ ε0 and γ, γ′ ∈ I(q). In particular, one has

‖Sm,m0,ε(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)

for 1 ≤ ρ ≤ τ ≤ ∞ with Mρ,τ and µ independent of m, m0 and 0 < ε ≤ ε0.
Finally, for every u0 ∈ H2γ,q

bc (Ω), with γ ∈ I(q), the function u(t; u0) := Sm,m0,ε(t)u0

is a weak solution of (1.3) in the sense that

∫

Ω
utϕ +

∫

Ω
(a(x)∇u∇ϕ + (c(x) − m(x))u)ϕ +

∫

Γ
(b(x) − m0(x))uϕ =

1

ε

∫

ωε

Vε(x)uϕ

for all sufficiently smooth ϕ.
In particular, if q > N − 1, then there exists γ′ ∈ I(q) such that H2γ′,q

bc (Ω) ⊂ Cβ(Ω)
for some β > 0 and the solutions of (1.3) become Cβ(Ω) smooth.
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Note that in the statement above, H2γ,q
bc (Ω) stand for suitable subspaces of the Bessel

potential spaces, which are described in Section 2. Also, note that if V0 ∈ Lr(Γ), for
r > N − 1, with the choice Vε = 0 and m0 + V0 replacing m0, the result above allows to
define the semigroup Sm,m0+V0(t) such that for every u0 ∈ H2γ,q

bc (Ω), with γ as above, the
function u(t; u0) := Sm,m0+V0(t)u0 is a weak solution of (1.4). With these notations we
have

Theorem 1.4 Assume

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1,

1

ε
XωεVε → V0, cc − Lr for some r > N − 1

and for any 1 < q < ∞, consider the semigroups Smε,m0,ε,ε(t) and Sm,m0+V0(t) as above.
Then for every

γ, γ′ ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
), γ′ ≥ γ,

and T > 0 there exists C(ε) → 0 as ε → 0, such that

‖Smε,m0,ε,ε(t) − Sm,m0+V0(t)‖L(H2γ,q
bc

(Ω),H2γ′ ,q
bc

(Ω))
≤

C(ε)

tγ′−γ
, for all 0 < t ≤ T.

In particular, if q > N − 1, then there exists γ′ ∈ I(q) such that H2γ′,q
bc (Ω)) ⊂ Cβ(Ω)

for some β > 0 and the solutions of (1.3) converge to solutions of (1.4) uniformly in Ω.

Finally, about the optimal exponential bound for the semigroups above we have the
following

Proposition 1.5 Assume

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1,

1

ε
XωεVε → V0, cc − Lr for some r > N − 1

and denote by λε
1 the first eigenvalue of the following eigenvalue problem











−div(a(x)∇ϕε) + c(x)ϕε = mε(x)ϕε + 1
ε
XωεVε(x)ϕε + λϕε in Ω

a(x)∂ϕε

∂~n
+ b(x)ϕε = m0,ε(x)ϕε on Γ

Bϕε = 0 on ∂Ω \ Γ.

i) We have that
λε

1 → λ0
1

5



which is the first eigenvalue of the limit eigenvalue problem











−div(a(x)∇ϕ) + c(x)ϕ = m(x)ϕ + λϕ in Ω,

a(x)∂ϕ
∂~n

+ b(x)ϕ = (m0(x) + V0(x))ϕ on Γ,
Bϕ = 0 on ∂Ω \ Γ.

ii) For sufficiently small ε and for any −µ < λ0
1, the semigroups Smε,m0,ε,ε(t) and Sm,m0+V0(t)

defined above satisfy

‖Smε,m0,ε,ε(t)u0‖H2γ′ ,q
bc

(Ω)
≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

‖Sm,m0+V0(t)u0‖H2γ′,q
bc

(Ω)
≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

for every γ, γ′ ∈ I(q) := (−1 + 1
2q

, 1 − 1
2q′

), with γ′ ≥ γ, for some Mγ′,γ independent of
0 < ε ≤ ε0. In particular,

‖Smε,m0,ε,ε(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)

and

‖Sm,m0+V0(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω)

with Mρ,τ independent of 0 < ε ≤ ε0.

These results are obtained in Corollary 2.6, Theorem 3.20, Theorem 4.4 and Proposi-
tion 4.7 which come our of some general perturbation results on analytic semigroups in
scales of Banach spaces, developed in Sections 3 and 4; see Lemma 3.2, Theorem 3.13,
Proposition 3.15, Theorem 4.1 and Corollary 4.3. These general results may be applied
to many other perturbation problems.

Finally Section 5 contains some further remarks on similar parabolic problems and in
particular, on the nonhomogeneous problem.

Some results on the corresponding nonlinear problems have been announced in [7].

2 Functional setting and resolvent estimates for el-

liptic operators

In this section we analyze the linear homogeneous problems (1.3) and (1.4) by means of
resolvent estimates for the associated elliptic operators.

For this, denote by A0 the operator A0u = −div(a(x)∇u) + c(x)u with boundary
conditions a(x)∂u

∂~n
+ b(x)u = 0 on Γ and Bu = 0 on ∂Ω \ Γ. Note the coefficients a, b, c

are C1–smooth. Also, note that all the analysis below applies in the case the diffusion
coefficient is a positive definite matrix instead of a scalar coefficient. We deal with the
latter case here only because the notations become simpler.
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Choosing Lq(Ω), for 1 < q < ∞, as a base space, the unbounded linear operator
A0 : D(A0) ⊂ Lq(Ω) → Lq(Ω), with domain D(A0) = H2,q

bc (Ω), consisting of all functions
in H2,q(Ω) which satisfy all boundary conditions above, generates an analytic semigroup
in Lq(Ω), see [2]. Here and below Hs,q(Ω) denote the Bessel potentials spaces which, for
integer s, coincide with the usual Sobolev spaces.

Using the complex interpolation–extrapolation procedure, one can construct the scale
of Banach spaces associated to this operator, which will be denoted H2α,q

bc (Ω) for α ∈
[−1, 1], which are closed subspaces of H2α,q(Ω) incorporating some of the boundary con-
ditions. In particular, we have H0,q

bc (Ω) = Lq(Ω), and

H1,q
bc (Ω) =

{

{u ∈ W 1,q(Ω) : u = 0 in ∂Ω \ Γ} for B Dirichlet
W 1,q(Ω) for B Robin.

Recall that Bessel spaces have the sharp embeddings

Hs,q(Ω) ⊂















Lr(Ω), s − N
q
≥ −N

r
, 1 ≤ r < ∞, if s − N

q
< 0

Lr(Ω), 1 ≤ r < ∞, if s − N
q

= 0

Cη(Ω̄) if s − N
q

> η > 0

with continuous embeddings, see [1]. This embeddings are known to be optimal.
Also, if T denotes the trace operator, then for s > 1

q
, T is well defined on Hs,q(Ω) and

Hs,q(Ω)
T
→















Lr(Γ), s − N
q
≥ −N−1

r
, 1 ≤ r < ∞, if s − N

q
< 0

Lr(Γ), 1 ≤ r < ∞, if s − N
q

= 0

Cη(Γ) if s − N
q

> η > 0

see [1].

Note that the scale with negative exponents satisfies H−2α,q
bc (Ω) = (H2α,q′

bc (Ω))′, for
0 < α < 1. Moreover, we have H−2α,q(Ω) = (H2α,q′(Ω))′ and H−2α,q(Ω) →֒ H−2α,q

bc (Ω).
See [2] for details. Using this it is easy to obtain that for s > 0 we have

H−s,q(Ω) ⊃















Lr(Ω), −s − N
q
≤ −N

r
, 1 < r ≤ ∞, if s − N

q′
< 0

Lr(Ω), 1 < r ≤ ∞, if s − N
q′

= 0

M(Ω) if s − N
q′

> 0.

Then, the operator −A0 or, more precisely, a suitable realization of it, generates an
analytic semigroup, S0(t), in each space of the scale H2α,q

bc (Ω), α ∈ [−1, 1]. This semigroup
is order preserving and satisfies the smoothing estimates

‖S0(t)u0‖H2α,q
bc

(Ω) ≤
Mα,βeµt

tα−β
‖u0‖H2β,q

bc
(Ω), t > 0, u0 ∈ H2β,q

bc (Ω) (2.1)

for 1 ≥ α ≥ β ≥ −1 and some µ ∈ IR. In particular, one has

‖S0(t)u0‖Lτ (Ω) ≤
Mτ,ρe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω) (2.2)
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for 1 ≤ ρ ≤ τ ≤ ∞. For any u0 in H2β,q
bc (Ω) or Lρ(Ω), the function u(t; u0) := S0(t)u0,

t > 0, is a classical solution of (1.3) for Vε = m = m0 = 0. The reader is referred to [2]
and references therein, for further properties of this scale of spaces and semigroups.

Note that this construction applies to much more general elliptic operators than above.
Also, in the construction above the regularity of the coefficients, plays a fundamental role;
see [2].

Therefore we consider now nonsmooth perturbations of the operator A0. More pre-
cisely we consider a nonsmooth potential m(x) in Ω, a nonsmooth perturbation, m0(x) of
the boundary coefficient b(x) in Γ as well as a family of concentrated perturbations in Γ

1

ε
X ωεVε(x).

In order to treat all perturbations in a unified form, we define for 0 < ε ≤ ε0,

< Pεu, ϕ >=
1

ε

∫

ωε

Vεuϕ, (2.3)

< Q0u, ϕ >=
∫

Ω
muϕ, < R0u, ϕ >=

∫

Γ
m0uϕ (2.4)

for suitable u and ϕ. Then we have

Lemma 2.1 Assume that m lies in a bounded set in Lp(Ω), m0 lies in a bounded set in
Lr(Γ) and also that the family of potentials Vε is a Lr–concentrated bounded family, that
is

1

ε

∫

ωε

|Vε|
r ≤ C.

Then
i) for s, σ ≥ 0 and

s + σ >
N

p
(2.5)

we have
Q0 ∈ L(Hs,q(Ω), H−σ,q(Ω)).

and is a bounded family in that space.
ii) for s > 1/q, σ > 1/q′ and

s + σ > 1 +
N − 1

r
(2.6)

satisfy
Pε, R0 ∈ L(Hs,q(Ω), H−σ,q(Ω))

and are bounded families in that space.

Proof. i) Note that for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
∫

Ω
muϕ| ≤ (

∫

Ω
|m|p)

1
p (
∫

Ω
|u|ρ)

1
ρ (
∫

Ω
|ϕ|τ)

1
τ

8



where 1
p

+ 1
ρ

+ 1
τ

= 1. Using the sharp embedding of the Bessel spaces, we have

|
∫

Ω
muϕ| ≤ C‖u‖Hs,q(Ω)‖ϕ‖Hσ,q′(Ω)

provided ρ, τ are such that s− N
q
≥ −N

ρ
, and σ − N

q′
≥ −N

τ
. These conditions can be met

because of (2.5).
ii) Now note that for every u ∈ Hs,q(Ω) and ϕ ∈ Hσ,q′(Ω) we have

|
1

ε

∫

ωε

Vεuϕ| ≤ (
1

ε

∫

ωε

|Vε|
r)

1
r (

1

ε

∫

ωε

|u|m)
1
m (

1

ε

∫

ωε

|ϕ|n)
1
n

where 1
r

+ 1
m

+ 1
n

= 1. Using Lemma 2.1 in [5] we have

|
1

ε

∫

ωε

Vεuϕ| ≤ C‖u‖Hs,q(Ω)‖ϕ‖Hσ,q′(Ω)

provided m, n are such that s− N
q
≥ −N−1

m
, with s > 1

q
, and σ− N

q′
≥ −N−1

n
, with σ > 1

q′
.

These conditions can be met because of (2.6). The case of R0 is entirely similar, using
integrals on Γ.

Then, we have the following result, which is, in particular, an improvement of Theorem
3.1 in [5].

Theorem 2.2 Assume that m lies in a bounded set in Lp(Ω), with p > N/2, m0 lies
in a bounded set in Lr(Γ) and also that the family of potentials Vε is a Lr–concentrated
bounded family, for r > N − 1, that is

1

ε

∫

ωε

|Vε|
r ≤ C, r > N − 1.

Then, for any 1 < q < ∞, there exists some ω0 > 0 independent of m, m0 and ε, such
that for any Re(λ) ≥ ω0 and any σ ∈ ( 1

q′
, 2− 1

q
) the elliptic operator A0+λI−(Pε+Q0+R0),

between H2−σ,q
bc (Ω) and H−σ,q

bc (Ω), is invertible and

‖(A0 + λI − (Pε + Q0 + R0))
−1‖L(H−σ,q

bc
(Ω),H−σ,q

bc
(Ω)) ≤

C

|λ|
, Re(λ) ≥ ω0 (2.7)

and

‖(A0 + λI − (Pε + Q0 + R0))
−1‖L(H−σ,q

bc
(Ω),H2−σ,q

bc
(Ω)) ≤ C, Re(λ) ≥ ω0 (2.8)

where C is independent of m, m0, ε and λ.

Proof. Note that using Lemma 2.1, since p > N and r > N − 1 we can take s + σ < 2 in
(2.5) and (2.6) and then Pε, Q0, R0 are well defined from Hs,q(Ω) into H−σ,q(Ω) provided
s > 1/q, σ > 1/q′ and

2 > s + σ > max{
N

p
, 1 +

N − 1

r
} := K.

9



In particular, for any σ ∈ ( 1
q′
, 2 − 1

q
) there exists σ̃ < σ such that

Sε := Pε + Q0 + R0 : H2−σ,q(Ω) → H−σ̃,q(Ω) ⊂ H−σ,q(Ω) (2.9)

is continuous and uniformly bounded in norm, for m and m0 in bounded sets and 0 <
ε ≤ ε0.

Then for given g ∈ H−σ,q
bc (Ω) the equation A0u + λu − Sεu = g can be written as

u = T ε
λ(u) := (A0 + λI)−1g + (A0 + λI)−1Sεu.

Observe now that from the resolvent estimates in [3], Chapter I, Section 1.2, we have that
for each 0 ≤ α ≤ 1, for some ω > 0 and C ≥ 1,

‖(A0 + λ)−1‖L(H−α,q
bc

(Ω),H−α,q
bc

(Ω)) ≤
C

|λ|
, Re(λ) ≥ ω

and
‖(A0 + λ)−1‖L(H−α,q

bc
(Ω),H2−α,q

bc
(Ω)) ≤ C, Re(λ) ≥ ω.

Interpolating these inequalities we get, for any α̃ > α

‖(A0 + λ)−1‖L(H−α,q(Ω),H2−α̃,q(Ω)) ≤
C

|λ|(α̃−α)/2
.

Therefore, from this and (2.9) we get that the Lipschitz constant of T ε
λ : H2−σ,q

bc (Ω) →
H2−σ,q

bc (Ω) is bounded by C
|λ|(σ−σ̃)/2 .

Therefore there exists ω0 ≥ ω such that T ε
λ is a contraction, with Lipschitz constant

θ < 1 uniform for all Re(λ) ≥ ω0 and m, m0 as in the statement and 0 < ε ≤ ε0. This
implies that the unique fixed point of T ε

λ satisfies

‖u‖H2−σ,q
bc

(Ω) ≤
1

1 − θ
‖(A0 + λ)−1g‖H2−σ,q

bc
(Ω) ≤

C

1 − θ
‖g‖H−σ,q

bc
(Ω), (2.10)

which proves (2.8). This, in turn, implies

‖u‖H−σ,q
bc

(Ω) ≤ ‖(A0+λ)−1g‖H−σ,q
bc

(Ω)+‖(A0+λ)−1Sεu‖H−σ,q
bc

(Ω) ≤
C

|λ|
(‖g‖H−σ,q

bc
(Ω)+‖Sεu‖H−σ,q

bc
(Ω))

and, using again (2.9) and (2.10), we get

‖u‖H−σ,q
bc

(Ω) ≤
C

|λ|
‖g‖H−σ,q

bc
(Ω)

which proves (2.7).

Remark 2.3 Note that if we only consider interior potentials, that is if m0 = 0 and
Vε = 0, then the range of σ in Theorem 2.2 changes to σ ∈ (0, 2), since we do not have
the restriction (2.6).
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We have then the following corollaries

Corollary 2.4

i) Assume

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1,

1

ε
XωεVε → V0, cc − Lr for some r > N − 1.

Assume moreover that

1

ε
Xωεhε → h0 cc − Lq for some q > 1.

and
gε → g0 weakly in Lz(Ω), jε → j0 weakly in Lt(Γ)

for some z ≥ Nq/(N − 1 + q) and t ≥ q.
Then, there exists some ω0 > 0 independent of ε, such that for Re(λ) ≥ ω0 there exists

a unique solution, uε, of











−div(a(x)∇uε) + c(x)uε = mε(x)uε + λuε + 1
ε
X ωεVε(x)uε + 1

ε
Xωεhε + gε in Ω,

a(x)∂uε

∂~n
+ b(x)uε = m0,ε(x)uε + jε on Γ,

Buε = 0 on ∂Ω \ Γ,

which converges
uε → u in Hs,q(Ω)

for any s < 1 + 1
q

where u is the unique solution of the limiting problem











−div(a(x)∇u) + c(x)u = m(x)u + λu + g0 in Ω,
a(x)∂u

∂~n
+ b(x)u = (m0(x) + V0(x))u + h0 + j0 on Γ,

Bu = 0 on ∂Ω \ Γ.

In particular, if q > N − 1, z > N/2 and t > N − 1, then

uε → u in Cβ(Ω),

for some β > 0.
ii) If m ∈ Lp(Ω), with p > N

2
and m0 ∈ Lr(Γ) with r > N − 1 then for any 1 < q < ∞,

the operator A0 − (Q0 + R0) in Theorem 2.2 is resolvent positive. That is, there exists
some ω0 > 0, such that for any λ ≥ ω0 and σ ∈ ( 1

q′
, 2 − 1

q
),

if 0 ≤ g ∈ H−σ,q
bc (Ω) then 0 ≤ (A0 + λI − (Q0 + R0))

−1g ∈ H2−σ,q
bc (Ω).

The constant ω0 can be taken uniform for m lying in a bounded set in Lp(Ω), with p > N/2
and m0 lying in a bounded set in Lr(Γ), with r > N − 1.
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Proof.

i) Note that since V0 ∈ Lr(Γ), we define

< P0u, ϕ >=
∫

Γ
V0uϕ (2.11)

for suitable u and ϕ. Then it was proved in Lemma 2.5 in [5] that

Pε → P0 in L(Hs,q(Ω), H−σ,q(Ω))

for s, σ as in (2.6). The rest of the proof goes along the same lines as Corollary 3.2 in [5].
ii) Note that for C1 coefficients, the property of resolvent positive follows from Theorem
8.7, page 48, in [2]. For nonsmooth coefficients take sequences of C1 smooth functions in
Ω and Γ respectively such that mε → m in Lp(Ω) with p > N

2
, and m0,ε → m0 in Lr(Γ),

with r > N − 1 and apply part i) with Vε = 0, hε = 0, jε = 0, gε = g.

Remark 2.5

i) Note that part i) of Corollary 2.4 can be stated as

(A0 + λI − (Pε + Q0 + R0))
−1 → (A0 + λI − (P0 + Q0 + R0))

−1

in L(H−σ,q
bc (Ω), H2−σ,q

bc (Ω)).
ii) On the other hand the convergence of the resolvent above implies also that the spectrum
of the operators A0 − (Pε + Q0 + R0) and A0 − (P0 + Q0 + R0) are close. See Corollary
4.2 and Remark 4.3 in [5] or [8] for a precise statement.

Corollary 2.6 Assume that m lies in a bounded set in Lp(Ω), with p > N/2, m0 lies
in a bounded set in Lr(Γ) and also that the family of potentials Vε is a Lr–concentrated
bounded family, for r > N − 1, that is

1

ε

∫

ωε

|Vε|
r ≤ C, r > N − 1.

Then, for any 1 < q < ∞, and for σ ∈ ( 1
q′
, 2 − 1

q
), 0 < ε ≤ ε0, the operator −(A0 −

(Pε + Q0 + R0)) in H−σ,q
bc (Ω) with domain H2−σ,q

bc (Ω), generates an strongly continuous,
order preserving, analytic semigroup, Sm,m0,ε(t). Moreover the semigroup satisfies the
smoothing estimates

‖Sm,m0,ε(t)u0‖H2α,q
bc

(Ω) ≤
Mα,βeµt

tα−β
‖u0‖H2β,q

bc
(Ω), t > 0, u0 ∈ H2β,q

bc (Ω) (2.12)

for − 1
2q′

≥ β ≥ −1 + 1
2q

and 1 − 1
2q′

≥ α ≥ β for some Mα,β and µ ∈ IR independent of
m, m0 and 0 < ε ≤ ε0. In particular, one has

‖Sm,m0,ε(t)u0‖Lτ (Ω) ≤
Mρ,τe

µt

t
N
2

( 1
ρ
− 1

τ
)
‖u0‖Lρ(Ω), t > 0, u0 ∈ Lρ(Ω) (2.13)

12



for 1 < ρ ≤ τ ≤ ∞ with Mρ,τ and µ independent of m, m0 and 0 < ε ≤ ε0.

Finally, for every u0 ∈ H2β,q
bc (Ω), with β as above, the function u(t; u0) := Sm,m0,ε(t)u0

is, for t > 0, a weak solution of (1.3) in the sense that
∫

Ω
utϕ +

∫

Ω
(a(x)∇u∇ϕ + (c(x) − m(x))u)ϕ +

∫

Γ
(b(x) − m0(x))uϕ =

1

ε

∫

ωε

Vε(x)uϕ

(2.14)
for all sufficiently smooth ϕ.

Proof. Using the uniform resolvent estimates, (2.7) and (2.8) in Theorem 2.2, we use
Proposition 1.4.1, Chapter I, in [3] to obtain similar uniform estimates for λ in a uniform
sector in the complex plane.

Then using that the semigroup can be obtained as an integral of the resolvent over a
suitable contour around that sector in the complex plane, see e.g. Theorem 1.3.4 in [6],
we obtain an analytic semigroup Sm,m0,ε(t) that satisfies

‖Sm,m0,ε(t)u0‖Hα,q
bc

(Ω) ≤
Mα,σeµt

t
α+σ

2

‖u0‖H−σ,q
bc

(Ω), t > 0, u0 ∈ H−σ,q
bc (Ω)

for 2 − σ ≥ α ≥ −σ and for some Mα,σ and µ independent of m, m0 and 0 < ε ≤ ε0.
As σ ranges in ( 1

q′
, 2 − 1

q
) and some easy reiteration of the estimates above, we get

(2.12).
Now, (2.12) and the sharp Sobolev embeddings of H2β,q

bc (Ω) ⊃ Lρ(Ω) (since β is nega-
tive) and H2α,q

bc (Ω) ⊂ Lτ (Ω), with α ≥ 0, give

−1 −
N − 1

q
≥

−N

ρ
:= 2β −

N

q
≥ −2 −

N − 1

q

and

1 −
N − 1

q
≥

−N

τ
:= 2α −

N

q
≥ −

N

q
,

which gives (2.13) for ρ, τ ≥ 1 such that

Nq

N + 2q − 1
≤ ρ ≤

Nq

N + q − 1

and

ρ ≤ τ











≤ Nq
N−q−1

if q < N − 1
< ∞, if q = N − 1
≤ ∞ if q > N − 1.

Using q as a parameter, some reiteration of the argument above gives (2.13) for 1 < ρ ≤
τ ≤ ∞.

The order preserving property of the semigroups follows from the positivity of the
resolvent established in Corollary 2.4.

Finally, since the semigroup is analytic, for every u0 ∈ H2β,q
bc (Ω), with β as in (2.12),

the function u(t; u0) := Sm,m0,ε(t)u0 satisfies, for t > 0, ut + (A0 − (Pε + Q0 + R0))u = 0

in H2β,q
bc (Ω). Then, (2.3), (2.4) and the characterization of the realization of A0 in that

spaces given in Section 8 in [2], gives (2.14).

13



Remark 2.7 Note that if V0 ∈ Lr(Γ), for r > N − 1, with the choice Vε = 0 and m0 +V0

replacing m0, Corollary 2.6 allows to define the semigroup Sm,m0+V0(t) such that for every

u0 ∈ H2β,q
bc (Ω), with β as in the Corollary, the function u(t; u0) := Sm,m0+V0(t)u0 is, for

t > 0, a weak solution of (1.4) in the sense that

∫

Ω
utϕ +

∫

Ω
(a(x)∇u∇ϕ + (c(x) − m(x))uϕ +

∫

Γ
(b(x) − m0(x))u =

∫

Γ
V0(x)uϕ (2.15)

for all sufficiently smooth ϕ.

3 Perturbation of linear analytic semigroups in scales

of Banach spaces

Observe that in Corollary 2.6 the space of initial data, H2β,q
bc (Ω), has always negative

exponent since − 1
2q′

≥ β ≥ −1 + 1
2q

. Therefore, our goal in this section is to improve

Corollary 2.6 by enlarging the range for which (2.12) is satisfied to

α, β ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
), α ≥ β,

with constants independent of m, m0 and 0 < ε ≤ ε0.
Instead of relying on resolvent estimates, as in the previous section (see Theorem 2.2)

we use a “parabolic” approach to deal with the perturbations. This approach will also be
useful to obtain the semigroup Sm,m0,ε(t) as a perturbation of S0(t) and to analyze the
convergence as ε → 0. Also, this approach can be applied to many other perturbation
problems.

For this, note that (2.1), that is

‖S0(t)u0‖H2α,q
bc

(Ω) ≤
Mα,βeµt

tα−β
‖u0‖H2β,q

bc
(Ω), t > 0, u0 ∈ H2β,q

bc (Ω) (3.1)

for 1 ≥ α ≥ β ≥ −1, can be rewritten in an abstract language as follows. For this we will
consider below

Xα := H2α,q
bc (Ω), α ∈ I := [−1, 1]. (3.2)

In view of (3.1) and (3.2), we consider a linear analytic semigroup S(t) defined on each
of the spaces of the family of Banach spaces (the “scale”) {Xα}α∈I where I is an interval
of real indexes. The norm of the space Xα is denoted by ‖ · ‖α.

We also assume that for all α, β ∈ I with α ≥ β we have

Xα ⊂ Xβ (3.3)

with continuous inclusion and the norm of the inclusion will be denoted ‖i‖α,β. Note that
for the example above, (3.2), we have ‖i‖α,β ≤ 1 for all α, β.
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We also assume the semigroup acting on the scale satisfies, α, β ∈ I with α ≥ β

‖S(t)‖β,α := ‖S(t)‖L(Xβ ,Xα) ≤
M0(β, α)

tα−β
, for all 0 < t ≤ 1 (3.4)

for some constant M0(β, α) > 0.

Remark 3.1

i) Note that the semigroup S0(t) of Section 2 in the scale (3.2) satisfies that for each β,
the domain of the generator −A0 in Xβ is given by D(A0) = Xβ+1 and also the inclusion
(3.3) is dense and compact. These properties will not be used below.
ii) In view of (2.2) another possible scale for the semigroup S0(t) is the scale of Lebesgue
spaces. More precisely we can set

Xα = Lρ(Ω), 1 ≤ q < ∞, α = −
N

2q
∈ I := [−N/2, 0).

On this scale we have (3.3) (which is dense but not compact) and S0(t) satisfies (3.4)
but not the property in part i) of this Remark.

Observe that from these assumptions we get

Lemma 3.2 Assume (3.3) and (3.4) are satisfied. Then
i) For every α, β ∈ I and α ≥ β and for all T > 0,

‖S(t)‖β,α ≤
M0(β, α, T )

tα−β
, for all 0 < t ≤ T (3.5)

for some constant M0(β, α, T ) > 0.
ii) For each β ∈ I there exists ω(β) ≥ 0 such that

‖S(t)‖β,β ≤ M0(β, β)eω(β)t, for all t > 0.

iii) Moreover, if for some fixed β0 ∈ I, we have

‖S(t)‖β0,β0 ≤ Meω0t, for all t > 0 (3.6)

for some M = M(β0) and ω0 ∈ IR, then for any α ∈ I, there exists a constant M(α) ≥ 1
such that

‖S(t)‖α,α ≤ M(α)eω0t, for all t > 0. (3.7)

Moreover, given t0 > 0, define δ = ‖S(t0)‖β0,β0. Then we have (3.6) with

ω0 =
ln(δ)

t0

and some constant M depending on t0, δ and M0(β0, β0, t0) as in (3.5). In particular if
δ < 1 then ω0 < 0.
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iv) In the situation of iii), for every α, β ∈ I and α ≥ β we have

‖S(t)‖β,α ≤

{

M1(β, α)t−(α−β) if 0 < t ≤ 1,
M1(β, α)eω0t if t > 1

for some positive constant M1(β, α).
In particular, for all ε > 0 there exists Mε(β, α) > 0 such that

‖S(t)‖β,α ≤ Mε(β, α)
e(ω0+ε)t

tα−β
, for all t > 0.

Proof.

i) Indeed, given T > 0 define n as the smallest integer such that T ≤ n + 1. Then, for
0 < t ≤ T , define h = t

n+1
≤ 1 and sj = jh, j = 0, . . . , n + 1. Thus sn+1 = t and, since

S(t) = S(sn+1 − sn) · · ·S(s1 − s)

we get, form (3.4),

‖S(t)‖β,α ≤ M0(α, α)nM0(β, α)(n + 1)α−βt−(α−β) for all 0 < t ≤ T.

Hence we can take

M0(β, α, T ) = M0(α, α)nM0(β, α)(n + 1)α−β.

ii) In particular, with α = β, given t > 0 define n ∈ IN such that n ≤ t < n + 1 and we
get as above,

‖S(t)‖β,β ≤ M0(β, β)n+1 ≤ M0(β, β)t+1 ≤ M0(β, β)eln(M0(β,β))t, for all t > 0

Note that as M0(β, β) ≥ 1 then ω(β) := ln(M0(β, β)) ≥ 0.
iii) First notice that from (3.4), for any α ≥ β0, we have ‖S(1)‖β0,α ≤ M0(β0, α). Now, if
t > 1, then

‖S(t)u0‖α ≤ ‖S(1)‖β0,α‖S(t− 1)u0‖β0

≤ M0(β0, α)Me−ω0eω0t‖u0‖β0

≤ M0(β0, α)‖i‖α,β0Me−ω0eω0t‖u0‖α,

where ‖i‖α,β0 denotes the norm of the inclusion Xα →֒ Xβ0. Thus,

‖S(t)‖α,α ≤ Keω0t, for all t > 1

with K = M0(β0, α)‖i‖α,β0Me−ω0 .
On the other hand, if β0 ≥ α, we also have, from (3.4), ‖S(1)‖α,β0 ≤ M0(α, β0) and

for t > 1,

‖S(t)u0‖α ≤ ‖i‖β0,α‖S(t)u0‖β0

≤ ‖i‖β0,α‖S(t − 1)‖β0,β0‖S(1)u0‖β0

≤ ‖i‖β0,αMe−ω0eω0t‖S(1)‖α,β0‖u0‖α

≤ ‖i‖β0,αMe−ω0M0(α, β0)e
ω0t‖u0‖α.
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Thus,
‖S(t)‖α,α ≤ Keω0t, for all t > 1

with K = M0(α, β0)‖i‖β0,αMe−ω0 .
Therefore, for any α ∈ I, we have the estimate

‖S(t)‖α,α ≤ K(α)eω0t, for all t > 1.

Hence, again from (3.4) with β = α, we get (3.7) with

M(α) =
{

max{K(α), M0(α, α)} if ω0 ≥ 0
max{K(α), M0(α, α)e−ω0} if ω0 ≤ 0.

If moreover for given t0 > 0 we define δ = ‖S(t0)‖β0,β0 then for t > 0 we write
t = nt0 + s, with n ∈ IN and 0 ≤ s < t0. Then

‖S(t)‖β0,β0 ≤ δn‖S(s)‖β0,β0 ≤ e
ln(δ)( t−s

t0
)
M0(β0, β0, t0)

with M0(β0, β0, t0) as in (3.5) and the result follows. In particular if δ < 1 then ω0 < 0.
iv) Now note that if 0 < t ≤ 1, the estimate reduces to (3.4). On the other hand, if t > 1,
then, using (3.4) and part iii), we get

‖S(t)‖β,α ≤ ‖S(t − 1)‖α,α‖S(1)‖β,α

≤ M0(β, α)M(α)e−ω0eω0t = M1(β, α)eω0t.

and the rest follows easily.

Remark 3.3 Observe that if the original constants M0(β, α) in (3.4), do not depend (or
can be taken independent of α, β ∈ I), then the same is true for M0(β, α, T ) and M(α)
in (3.7) depends on the scale only through the norm of the inclusions ‖i‖β0,α or ‖i‖α,β0.

Hereafter we will make use extensively the following spaces.

Definition 3.4

For T > 0, γ ∈ I and ε ≥ 0 we define for functions in L∞
loc((0, T ], Xγ), the quantity

|||u|||γ,ε = sup
t∈(0,T ]

tε‖u(t)‖γ

which becomes a norm on the set of functions where it is finite, that we denote L∞
ε ((0, T ], Xγ).

Note that this set always contains L∞([0, T ], Xγ) and coincides with it when ε = 0. Also,
the spaces are increasing with ε. Then we have

Lemma 3.5 For T > 0, γ ∈ I and ε ≥ 0, L∞
ε ((0, T ], Xγ) with norm |||u|||γ,ε is a Banach

space.
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Proof. Note that {uk}k is a Cauchy sequence in L∞
ε ((0, T ], Xγ) iff vk(t) = tεuk(t) is a

Cauchy sequence in L∞([0, T ], Xγ) and also uk(t) converges in Xγ to some u(t) for each
t > 0 and uniformly for δ ≤ t ≤ T . The rest is easy.

Also, part i) in Lemma 3.2 can be stated as

Lemma 3.6 Assume the semigroup S(t) and the scale of spaces satisfy (3.3) and (3.4).
Then, for any α, β ∈ I with α ≥ β and T > 0,

S(·) : Xβ −→ L∞
α−β((0, T ], Xα), u0 7→ S(·)u0

is linear and continuous.

Remark 3.7 To motivate our approach below, observe that from the proof of Corollary
2.6 we have that for every u0 ∈ H2β,q

bc (Ω), with β as in (2.12), the function u(t; u0) :=
Sm,m0,ε(t)u0 satisfies, for t > 0, ut + A0u = Sεu in H2β,q

bc (Ω), with Sε = Pε + Q0 + R0 as
in (2.9). Then, the variations of constants formula for the analytic semigroup S0(t), see
[6], gives

u(t; u0) = S0(t)u0 +
∫ t

0
S0(t − τ)Sεu(τ ; u0) dτ.

Now, in the general setting (3.3)–(3.4), assume that for some fixed α ≥ β, with
0 ≤ α − β < 1 we have a linear perturbation satisfying

P ∈ L(Xα, Xβ). (3.8)

Consider the abstract linear integral problem with u0 to be chosen below

u(t; u0) = S(t)u0 +
∫ t

0
S(t − τ)Pu(τ ; u0) dτ, t > 0. (3.9)

Definition 3.8 For a given function u defined on (0, T ] and taking values in Xα, we
define

F(u, u0)(t) = S(t)u0 +
∫ t

0
S(t − τ)Pu(τ) dτ, 0 < t ≤ T (3.10)

assumed it is well defined.

Then we have the following Lemma

Lemma 3.9 Assume the semigroup S(t) and the scale of spaces satisfy (3.3) and (3.4)
and the perturbation P satisfies (3.8). Assume ε ≥ 0, δ ≥ 0, γ, γ′ ∈ I, with and γ′ ≥ γ,
are such that

β ≤ γ′ < β + 1 and 0 ≤ ε < 1 (3.11)

Then for u ∈ L∞
ε ((0, T ], Xα) and u0 ∈ Xγ, we have

i) For 0 < t ≤ T

tδ‖
∫ t

0
S(t − τ)Pu(τ) dτ‖γ′ ≤ M1(T )tβ+δ+1−γ′−ε‖P‖L(Xα,Xβ)|||u|||α,ε
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where M1(T ) = c(β, γ′, ε)M0(β, γ′, T ).
ii) For 0 < t ≤ T

tδ‖F(u, u0)(t)‖γ′ ≤ tδ‖S(t)u0‖γ′ + M1(T )tβ+δ+1−γ′−ε‖P‖L(Xα,Xβ)|||u|||α,ε

with M1(T ) as above.
iii) In particular, if

δ = γ′ − γ ≥ 0 and γ < β + 1 − ε, (3.12)

then
|||F(u, u0)|||γ′,δ ≤ |||S(·)u0|||γ′,δ + C(T )‖P‖L(Xα,Xβ)|||u|||α,ε

with C(T ) = M1(T )T β+1−γ−ε and all terms above are finite. In particular,

(u, u0) ∋ L∞
ε ((0, T ], Xα) × Xγ 7−→ F(u, u0) ∈ L∞

γ′−γ((0, T ], Xγ′

)

is linear and continuous.

Proof. We first prove part i), and then part ii) and iii) are immediate. Using (3.5) we
have for γ′ ≥ β

tδ‖
∫ t

0
S(t − τ)Pu(τ) dτ‖γ′ ≤ M(T )tδ

∫ t

0

1

(t − τ)γ′−β
‖P‖α,β‖u(τ)‖α dτ ≤

≤ M(T )|||u|||α,ε‖P‖α,βt
δ
∫ t

0

1

(t − τ)γ′−βτ ε
dτ,

where we have set M(T ) = M0(β, γ′, T ) as in (3.5). Now the change of variables τ = rt
gives the result with

M1(T ) = M(T )(
∫ 1

0

1

(1 − r)γ′−βrε
dr)

provided γ′ − β < 1 and ε < 1 as in the statement.

Note that when we take γ′ > γ in Lemma 3.9 above, this result can be interpreted as
a smoothing effect of the variation of constants formula (3.10). The same applies to the
next result in which we analyze continuity in time.

Lemma 3.10 With the same notations and assumptions as in Lemma 3.9, for u ∈
L∞

ε ((0, T ], Xα) and u0 ∈ Xγ, if (3.11) holds, that is

β ≤ γ′ < β + 1, 0 ≤ ε < 1

we have
F(u, u0) ∈ C((0, T ], Xγ′

).

Further more F(u, u0) is locally Hölder continuous with values in Xγ′

.
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Proof. Fix 0 < t < T and take h > 0 small, so that t + h ≤ T . Also take 0 < t∗ < t − h
to be chosen below. Then, from (3.10) we have

F(u, u0)(t
∗) = S(t∗)u0 +

∫ t∗

0
S(t∗ − τ)Pu(τ) dτ.

Then we get,

F(u, u0)(t + h) = S(t + h − t∗)F(u, u0)(t
∗) +

∫ t+h

t∗
S(t + h − τ)Pu(τ) dτ,

F(u, u0)(t) = S(t − t∗)F(u, u0)(t
∗) +

∫ t

t∗
S(t − τ)Pu(τ) dτ

The, suppressing temporarily the dependence in u0, we get

F(u)(t + h) −F(u)(t) =
(

S(t + h − t∗) − S(t − t∗)
)

F(u)(t∗)+

+
∫ t+h

t
S(t + h − τ)Pu(τ) dτ +

∫ t

t∗

(

S(h) − I
)

S(t − τ)Pu(τ) dτ. (3.13)

Now we estimate in norm in (3.13) to get

‖F(u)(t + h) − F(u)(t)‖γ′ ≤ ‖
(

S(t + h − t∗) − S(t − t∗)
)

F(u)(t∗)‖γ′+

+M(T )
∫ t+h

t
(t+h− τ)−(γ′−β)‖P‖α,β‖u(τ)‖α dτ +M(T )

∫ t

t∗
(t− τ)−(γ′−β)‖P‖α,β‖u(τ)‖α dτ

where, in the third term, we have used that ‖S(h) − I‖γ′,γ′ is bounded.
Now, since S(t) is an analytic semigroup, the first term is bounded by a constant times

h, while using that u is bounded in Xα on [t∗, T ], the second and third ones are bounded,
respectively, by

K(T, u)

(

∫ t+h

t
(t + h − τ)−(γ′−β) dτ

)

‖P‖L(Xα,Xβ) = K1(T, u)‖P‖L(Xα,Xβ)h
1−(γ′−β)

K(T, u)
(
∫ t

t∗
(t − τ)−(γ′−β) dτ

)

‖P‖L(Xα,Xβ) = K1(T, u)‖P‖L(Xα,Xβ)(t − t∗)1−(γ′−β)

Now taking t∗ = t − 2h, we get the result.

Now we finally analyze continuity at t = 0.

Lemma 3.11 With the notations of Lemma 3.9, if

β ≤ γ′ < β + 1 − ε, 0 ≤ ε < 1

then for u ∈ L∞
ε ((0, T ], Xα) and u0 ∈ Xγ′

F(u, u0)(t) → u0, in Xγ′

, as t → 0.

Moreover, if u0 ∈ Xγ, for some γ ≤ γ′,

F(u, u0)(t) → u0, in Xγ, as t → 0.
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Proof. By part i) in Lemma 3.9, with δ = 0, we have

‖
∫ t

0
S(t − τ)Pu(τ) dτ‖γ′ ≤ M1(T )tβ+1−γ′−ε‖P‖L(Xα,Xβ)|||u|||α,ε

where M1(T ) = c(β, γ′, ε)M0(β, γ′, T ). Clearly the right hand side above goes to zero, as
t → 0.

On the other hand note that, by the choice of u0 we have S(t)u0 → u0 in Xγ′

, or in
Xγ since the spaces satisfy (3.3).

To find solutions of the linear problem (3.9), we start by the following “base” case.

Proposition 3.12 Solutions in Xα.

Assume the semigroup S(t) and the scale of spaces satisfy (3.3) and (3.4) and assume
also the perturbation satisfies (3.8). If

0 ≤ α − β < 1, (3.14)

then for each u0 ∈ Xα there exists a unique solution of (3.9), u(·; u0) ∈ L∞
loc((0,∞), Xα),

which is moreover in C([0,∞), Xα).
Furthermore, for each α ≤ γ′ < β + 1, we have that the solution satisfies

u(·; u0) ∈ C((0,∞), Xγ′

).

Even more, the unique solutions of (3.9) define a linear semigroup in Xα as

SP (t)u0 := u(t; u0), for all t > 0 (3.15)

Proof. We show that there exists T > 0 such that F(·, u0) is a contraction in L∞([0, T ], Xα).
For this take u0 ∈ Xα and u1, u2 in L∞([0, T ], Xα) and note that, the right hand side of
(3.10) is affine in u. Also from (3.14) we can use part iii) of Lemma 3.9 with γ′ = γ = α,
δ = ε = 0, to get F(ui, u0) ∈ L∞([0, T ], Xα) and also

|||F(u1, u0) −F(u2, u0)|||α,0 ≤ C(T )‖P‖L(Xα,Xβ)|||u1 − u2|||α,0

with C(T ) = M1(T )T β+1−α and is a contraction for small enough T .
Since T can be taken independent of u0 ∈ Xα, it is easy to obtain that the solutions are

defined for all t ≥ 0. The continuity in time comes from Lemma 3.10 while the continuity
at t = 0 in Xα comes from Lemma 3.11, with γ′ = α and ε = 0.

Also, from (3.10) it follows that the operators defined in (3.15) are linear. Finally, the
continuity of SP (t) in Xα will be proved in Proposition 3.15 below.

For weaker initial data we have the following result.

Theorem 3.13 Solutions in Xγ.

Assume the scale of spaces satisfy (3.3) and (3.4) and assume also the perturbation
satisfies (3.8). If (3.14) is satisfied, that is

0 ≤ α − β < 1,
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then for each
α − 1 < γ ≤ α, (3.16)

there exists T such that for each u0 ∈ Xγ there exists a unique solution of (3.9) u ∈
L∞

ε ((0, T ], Xα), with 0 ≤ ε = α − γ < 1.
Moreover the solution above is defined for all t > 0 and for each

β ≤ γ′ < β + 1, γ′ ≥ γ, (3.17)

we have that the solution satisfies

u(·; u0) ∈ C((0,∞), Xγ′

).

If, additionally u0 ∈ Xγ′

then

u(·; u0) ∈ C([0,∞), Xγ′

).

Even more, the unique solutions of (3.9) define a linear semigroup in Xγ as

SP (t)u0 := u(t; u0), for all t > s. (3.18)

Proof. Now we show that F(·, u0) is a contraction in L∞
ε ((0, T ], Xα) with 0 ≤ ε = α−γ <

1. For this take u0 ∈ Xγ and u1, u2 in L∞
ε ((0, T ], Xα) and note that the right hand side

of (3.10) is affine in u. Also, from (3.14) and (3.16) we can use part iii) of Lemma 3.9
with γ′ = α and 0 ≤ ε = δ = α − γ < 1, to get F(ui, u0) ∈ L∞

ε ((0, T ], Xα) and also

|||F(u1, u0) − F(u2, u0)|||α,ε ≤ C(T )‖P‖L(Xα,Xβ)|||u1 − u2|||α,ε

with C(T ) = M1(T )T β+1−α and is a contraction for small enough T .
Since T can be taken independent of u0 ∈ Xγ, then it is easy to obtain that the

solutions are defined for all t ≥ 0.
The continuity in time comes from Lemma 3.10 while the continuity at t = 0 in Xγ′

comes from Lemma 3.11, with ε = α − γ.
Now observe that in particular we have that for t0 > 0 the solution satisfies u(t0) ∈ Xα

and u ∈ L∞
loc([t0,∞), Xα). Hence after time t0, the solution coincides with the unique

solution of Proposition 3.12.
In particular, from this, it is easily seen that the linear operators SP (t) define a linear

semigroup.
As before, the continuity of SP (t) in Xγ will be proved in Proposition 3.15 below.

Remark 3.14 i) Note that the result in Proposition 3.12 and in Theorem 3.13 holds,
even if

α − β = 1

provided the norm ‖P‖L(Xα,Xβ) is sufficiently small.
ii) Note that the time T for which F is a contraction in Proposition 3.12 and in Theorem
3.13 can be taken the same for all perturbations such that

‖P‖L(Xα,Xβ) ≤ R0

for some R0 > 0.
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Now we prove the following estimates on the solutions of (3.9). In particular this
proves that the semigroup SP (t) defined in (3.15) and (3.18) is continuous.

Proposition 3.15 Assume (3.3), (3.4), (3.8), and (3.14). Then for every R0 > 0 and
every

P ∈ L(Xα, Xβ) with ‖P‖L(Xα,Xβ) ≤ R0

and for every γ, γ′ ∈ I such that

γ ∈ E(α) = (α − 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ, (3.19)

there exist constants ω = ω(γ′, R0) ≥ 0 and M0 = M0(γ, γ′, R0) such that, for t > 0,

‖SP (t)u0‖γ′ ≤ M0e
ωtt−(γ′−γ)‖u0‖γ , γ′ ≥ γ. (3.20)

In particular SP (t) ∈ L(Xγ) and it is a semigroup of linear continuous operators in
Xγ.

Proof. First, by (3.14) and (3.19), see (3.16), we can use part iii) in Lemma 3.9 for the
fixed point of F , with γ′ = α, 0 ≤ ε = δ = α − γ < 1, to get

|||u(·; u0)|||α,ε ≤ |||S(·)u0|||α,ε + C(T )‖P‖L(Xα,Xβ)|||u(·; u0)|||α,ε

with C(T ) = M1(T )T β+1−α.
Then, note that, by (3.5) and the choice of ε, |||S(·)u0|||α,ε ≤ M0(γ, α, T )‖u0‖γ and by

(3.8), take T such that C(T )‖P‖L(Xα,Xβ) ≤
1
2

for all perturbations P as in the statement.
Thus,

|||u(·; u0)|||α,ε ≤ 2M0(γ, α, T )‖u0‖γ. (3.21)

Now by (3.19), we can use part iii) in Lemma 3.9 for the fixed point of F , with γ′ ≥ γ,
δ = γ′ − γ, 0 ≤ ε = α − γ < 1, to get

|||u(·; u0)|||γ′,δ ≤ |||S(·)u0|||γ′,δ + C(T )‖P‖L(Xα,Xβ)|||u(·; u0)|||α,ε.

again with C(T ) = M1(T )T β+1−α.
Then, note that, by (3.5) and the choice of δ, |||S(·)u0|||γ′,δ ≤ M0(γ, γ′, T )‖u0‖γ and

using (3.21), we have

|||u(·; u0)|||γ′,δ ≤
(

M0(γ, γ′, T ) + C(T )‖P‖L(Xα,Xβ)2M0(γ, α, T )
)

‖u0‖γ.

Hence, by the choice of T above,

|||u(·; u0)|||γ′,δ ≤ M̃0(γ, γ′, T )‖u0‖γ

with M̃0(γ, γ′, T ) = M0(γ, γ′, T ) + M0(γ, α, T ).
Note that this gives,

‖SP (t)‖γ,γ′ ≤
M̃0(γ, γ′, T )

tγ′−γ
, for all 0 < t ≤ T. (3.22)

Arguing as in i) in Lemma 3.2 we conclude (3.20).
In particular, since Xγ′

⊂ Xγ, from (3.20) we get that SP (t) ∈ L(Xγ) and is a
semigroup of linear continuous operators in Xγ.
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Remark 3.16 Observe that if the original constants M0(β, α) in (3.4), do not depend, or
can be taken independent of α, β ∈ I, then the same is true for M0(γ, γ′, R0) and ω(γ′, R0)
in Proposition 3.15, which become independent of the spaces of the scale.

In any case, once the perturbation P is fixed, the estimate (3.22) for 0 < t ≤ 1 allows
to apply part iii) in Lemma 3.2 to obtain that there exists ω0 = ω0(P ) such that

‖SP (t)u0‖γ ≤ M0(γ)eω0t‖u0‖γ

for all γ ∈ E(α) = (α − 1, α]. In turn, part iv) in Lemma 3.2 implies that (3.20) holds
for some exponent independent of γ, γ′.

Remark 3.17 Strong solutions

i) Note that for u0 ∈ Xα the solution of (3.9) obtained in Proposition 3.12 satisfies

u(t; u0) = SP (t)u0 = F(u, u0)(t) = S(t)u0 +
∫ t

0
S(t − τ)Pu(τ ; u0) dτ.

Then, by Lemma 3.10, u is locally Hölder with values in Xα and then h(τ) = Pu(τ) is
locally Hölder with values in Xγ for any γ ≤ β. Since S(t) is analytic, then Lemma 3.2.1
in [6] implies that, for t > 0, u(t; u0) is a C1 strong solution of

ut + Au = Pu, in Xγ,

where −A is the infinitesimal generator of the semigroup S(t) in Xγ. In particular −(A−
P ) is the infinitesimal generator of the semigroup SP (t).

For u0 ∈ Xγ, for γ ∈ E(α), the solution of (3.9) obtained in Theorem 3.13 satisfies
u(t0) ∈ Xα, for any t0 > 0 and we can use the argument above for t > t0 as well.

ii) Assume we can prove that the semigroup SP (t) is analytic in Xγ. Then, thanks to
Proposition 3.15, we can use the Transfer of Analiticity lemma, proved in [4]

Lemma 3.18 Transfer of Analiticity

Assume {S(t)}t≥0 is an analytic semigroup in a Banach space X. Assume that for
some Banach space Y and for t > 0,

S(t) ∈ L(X, Y ).

Then for each u0 ∈ X, the curve of the semigroup (0,∞) ∋ t 7→ S(t)u0 is analytic in
Y . Moreover for each t0, the Taylor series in Y has a radius of convergence not smaller
than the one in X.

In particular if Y ⊂ X, with continuous injection, then {S(t)}t≥0 defines an analytic
semigroup in Y .

to conclude that SP (t) defines an analytic semigroup in Xγ′

for γ′ ≥ γ.
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Now we consider the case in which several perturbations are considered sequentially.
Assume

P 1, P 2 ∈ L(Xα, Xβ), with 0 ≤ α − β < 1

and consider the semigroup SP 1(t) for u0 ∈ Xγ with γ ∈ E(α). Now we repeat the
construction starting out of SP 1(t). Then we would have the new semigroup that we
denote S[P 1,P 2](t) which is formally given by

S[P 1,P 2](t)u0 = SP 1(t)u0 +
∫ t

0
SP 1(t − τ)P 2S[P 1,P 2](τ)u0 dτ. (3.23)

Now we state some properties of the resulting semigroups.

Lemma 3.19 i) If P = aI, with a ∈ IR, then

SaI(t) = eatS(t) in Xγ for every γ ∈ I.

ii) If P ∈ L(Xα, Xβ), 0 ≤ α − β < 1, and a ∈ IR then

S[aI,P ](t) = S[P,aI](t) = SP+aI(t) = eatSP (t) in Xγ for every γ ∈ E(α).

iii) If P 1, P 2 ∈ L(Xα, Xβ), 0 ≤ α − β < 1, then

S[P 1,P 2](t) = S[P 2,P 1](t) = SP 1+P 2(t) in Xγ for every γ ∈ E(α).

Proof.

i) Note that for P = aI we can take α = β = γ for any γ ∈ I. Now for u0 ∈ Xγ we have
that u(t; u0) = SaI(t)u0 is the unique fixed point of (3.9), that is

u(t; u0) = S(t)u0 + a
∫ t

0
S(t − τ)u(τ ; u0) dτ.

On the other hand, setting v(t) = eatS(t)u0 we have

S(t)u0 + a
∫ t

0
S(t − τ)v(τ) dτ =

(

1 +
∫ t

0
aeaτ dτ

)

S(t)u0 = eatS(t)u0 = v(t).

Hence, v(t) = u(t; u0).
ii) From i), applied to SP (t), we have, for every u0 ∈ Xγ with γ ∈ E(α), S[P,aI](t)u0 =
eatSP (t)u0 which, by (3.9), can be written as

eatSP (t)u0 = eatS(t)u0 +
∫ t

0
ea(t−τ)S(t − τ)P

(

eaτSP (τ)u0

)

dτ.

On the other hand, by the expression for SaI(t) from i), we have that for every u0 ∈ Xγ

with γ ∈ E(α),

S[aI,P ](t)u0 = eatS(t)u0 +
∫ t

0
ea(t−τ)S(t − τ)PS[aI,P ](τ)u0 dτ.
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The uniqueness of the fixed point problem gives

S[aI,P ](t)u0 = eatSP (t)u0 = S[P,aI](t)u0.

iii) Note that from Remark 3.17, for every γ ∈ E(α) and u0 ∈ Xγ, u(t; u0) := SP 1+P 2(t)u0

satisfies, for t > 0,
ut + Au = (P 1 + P 2)u, in Xγ,

which can be written as
ut + (A − P 1)u = P 2u,

or as
ut + (A − P 2)u = P 1u.

In the first case we get

u(t; u0) = SP 1(t)u0 +
∫ t

0
SP 1(t − τ)P 2u(τ ; u0) dτ

while in the second

u(t; u0) = SP 2(t)u0 +
∫ t

0
SP 2(t − τ)P 1u(τ ; u0) dτ.

The uniqueness of solutions of (3.9) implies then that u(t; u0) = S[P 1,P 2](t)u0, in the
first case and u(t; u0) = S[P 2,P 1](t)u0 in the second.

From the results above, we obtain in particular, with the notations in Section 2

Theorem 3.20 Assume that m lies in a bounded set in Lp(Ω), with p > N/2, m0 lies
in a bounded set in Lr(Γ) and also that the family of potentials Vε is a Lr–concentrated
bounded family, for r > N − 1, that is

1

ε

∫

ωε

|Vε|
r ≤ C, r > N − 1.

Then, for any 1 < q < ∞, the problem (1.3) defines a strongly continuous, order
preserving, analytic semigroup, Sm,m0,ε(t) in the space H2γ,q

bc (Ω) for any

γ ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
).

Moreover the semigroup satisfies the smoothing estimates

‖Sm,m0,ε(t)u0‖H2γ′,q
bc

(Ω)
≤

Mγ′,γe
µt

tγ′−γ
‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω) (3.24)

for every γ, γ′ ∈ I(q), with γ′ ≥ γ, for some Mγ′,γ and µ ∈ IR independent of m, m0 and
0 < ε ≤ ε0 and γ, γ′ ∈ I(q).
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Finally, we have the variations of constants formula

Sm,m0,ε(t)u0 = u(t; u0) = S0(t)u0 +
∫ t

0
S0(t − τ)Sεu(τ ; u0) dτ, t > 0, (3.25)

where Sε is given in (2.9) and the semigroup Sm,m0,ε(t) coincides with the one in Corollary
2.6 and gives, for t > 0, weak solutions of (1.3) as in (2.14).

In particular, if q > N − 1, then there exists γ′ ∈ I(q) such that H2γ′,q
bc (Ω)) ⊂ Cβ(Ω)

for some β > 0 and the solutions of (1.3) become Cβ(Ω) smooth.

Proof. Note that from Section 2 we have (3.1) and (3.2) so we can apply the results of
this section here.

Also, recall that from Lemma 2.1, since p > N and r > N − 1 we can take s + σ < 2
in (2.5) and (2.6) and then, for any 1 < q < ∞, Pε, Q0, R0 are well defined from Hs,q(Ω)
into H−σ,q(Ω) provided s > 1/q, σ > 1/q′ and

2 > s + σ > max{
N

p
, 1 +

N − 1

r
} := K. (3.26)

Hence Sε := Pε + Q0 +R0 ∈ L(Hs,q(Ω), H−σ,q(Ω)) and using the embeddings discussed in
Section 2, we get

Sε := Pε + Q0 + R0 ∈ L(Hs,q
bc (Ω), H−σ,q

bc (Ω))

is continuous and uniformly bounded in norm, for 0 < ε ≤ ε0, for s, σ in that range.
Therefore we can apply Theorem 3.13 and Proposition 3.15 with α = s

2
and β = −σ

2
and

we get the above results for indexes

γ ∈ (
s

2
− 1,

s

2
], γ′ ∈ [−

σ

2
, 1 −

σ

2
), γ′ ≥ γ.

Now note that as s, σ range over the set defined by (3.26), then the intervals for γ and γ′

above fill the interval I(q).
Also, Proposition 3.15 gives (3.24) and the fact that µ is independent of γ, γ′ follows

from Lemma 3.2.
Note that the variation of constants formula (3.25) is given by construction. Then, for

γ such that − 1
2q′

≥ γ ≥ −1+ 1
2q

, from Remark 3.7, we have that the semigroup Sm,m0,ε(t)
coincides with the one constructed in Corollary 2.6. In particular it is order preserving.
Also, since the latter semigroup is analytic we can use Remark 3.17 to conclude that
Sm,m0,ε(t) is an analytic semigroup as in the statement. Also, we get that the semigroup
gives weak solutions of (1.3) as in (2.14).

Remark 3.21 The order preserving property can also be obtained as a consequence of
Theorem 4.4 below.

Then we have the following

Definition 3.22 If V0 ∈ Lr(Γ), with r > N − 1, the semigroup Sm,m0+V0(t) is defined as
in Theorem 3.20 with the choice Vε = 0 and m0 + V0 replacing m0.

Note that for every u0 ∈ H2γ,q
bc (Ω), with γ ∈ I(q), as in the Theorem, the function

u(t; u0) := Sm,m0+V0(t)u0 is, for t > 0, a weak solution of (1.4) in the sense of (2.15).
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4 Convergence of linear semigroups

Our goal here is to prove, in particular, that the semigroup Sm,m0,ε(t) in Theorem 3.20
converges, in a suitable sense, to the semigroup Sm,m0+V0(t) in Definition 3.22, provided

1

ε
XωεVε → V0, cc − Lr for some r > N − 1.

This result will come out of a more general result on the dependence of perturbations.
With the setting of Section 3, assume that we have two perturbations

P i ∈ L(Xα, Xβ), i = 1, 2, 0 ≤ α − β < 1.

Our goal is then to compare semigroups SP i(t), i = 1, 2. Hence assume

‖P i‖L(Xα,Xβ) ≤ R0 i = 1, 2

for some R0 > 0. Also, consider the existence and regularity intervals as in (3.19)

γ ∈ E(α) = (α − 1, α], γ′ ∈ R(β) = [β, β + 1), γ′ ≥ γ.

Consider then two initial data ui
0 ∈ Xγ, i = 1, 2 and the corresponding solution of

(3.9)

ui(t; ui
0) = SP i(t)ui

0 = S(t)ui
0 +

∫ t

0
S(t − τ)P iui(τ ; ui

0) dτ, t > 0

and denote
z(t, u1

0, u
2
0) = u1(t; u1

0) − u2(t; u2
0).

Theorem 4.1 With the notations above, for any R0 > 0,
i) There exists a sufficiently small T0 such that for all perturbations P i such that ‖P i‖L(Xα,Xβ) ≤
R0,

|||z(·, u1
0, u

2
0)|||γ′,δ ≤ L(T0, R0)

(

‖u1
0 − u2

0‖γ + ‖P 1 − P 2‖L(Xα,Xβ)‖u
2
0‖γ

)

, (4.1)

with δ = γ′ − γ. In particular,

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤
L(T0, R0)

tγ′−γ
‖P 1 − P 2‖L(Xα,Xβ), for all 0 < t ≤ T0 (4.2)

ii) For every T > T0

‖z(t, u1
0, u

2
0)‖γ′ ≤ M2(T, T0, R0)

(

‖u1
0 − u2

0‖γ + ‖P 1 − P 2‖L(Xα,Xβ)‖u
2
0‖γ

)

, T0 ≤ t ≤ T.

(4.3)
In particular,

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤ L(T, T0, R0)‖P
1 − P 2‖L(Xα,Xβ), for all T0 < t ≤ T (4.4)
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Proof.

i) We first show the estimate for short times. Dropping momentarily the dependence in
u1

0, u
2
0, we get

z(t) = S(t)(u1
0 − u2

0) +
∫ t

0
S(t − τ)

(

P 1 − P 2
)

u2(τ) dτ +
∫ t

0
S(t − τ)P 1z(τ) dτ.

First note that by (3.20) in Proposition 3.15 we have, for ε = α−γ and for any T > 0,

|||ui|||α,ε ≤ M0(T, R0)‖u
i
0‖γ. (4.5)

Then, arguing as in Lemma 3.9, we get, with δ = γ′ − γ,

|||z|||γ′,δ ≤ |||S(·)(u1
0−u2

0)|||γ′,δ+C(T )‖P 1−P 2‖L(Xα,Xβ)|||u
2|||α,ε+C(T )‖P 1‖L(Xα,Xβ)|||z|||α,ε

with C(T ) = M1(T )T β+1−δ. Also note that the first term in the right hand side is bounded
by M(T )‖u1

0 − u2
0‖γ.

First, with γ′ = α, δ = α − γ = ε, we get

|||z|||α,ε ≤ M(T )‖u1
0−u2

0‖γ +C(T )‖P 1−P 2‖L(Xα,Xβ)|||u
2|||α,ε+C(T )‖P 1‖L(Xα,Xβ)|||z|||α,ε

with C(T ) = M1(T )T 1+β−α. Then for T0 small such that C(T0)R0 ≤ 1/2 we get

|||z|||α,ε ≤ 2M(T0)‖u
1
0 − u2

0‖γ + 2C(T0)‖P
1 − P 2‖L(Xα,Xβ)|||u

2|||α,ε. (4.6)

Now with γ′ and δ = γ′ − γ and ε = α − γ, we get

|||z|||γ′,δ ≤ M(T0)‖u
1
0−u2

0‖γ+C(T0)‖P
1−P 2‖L(Xα,Xβ)|||u

2|||α,ε+C(T0)‖P
1‖L(Xα,Xβ)|||z|||α,ε

again with C(T0) = M1(T0)T
1+β−α
0 .

Hence, using (4.5) and (4.6), we get (4.1) which is valid for all P i such that ‖P i‖L(Xα,Xβ) ≤
R0.

In particular, if u1
0 = u2

0 = u0 then

|||z|||γ′,δ ≤ L(T0, R0)‖P
1 − P 2‖L(Xα,Xβ)‖u0‖γ

which leads to (4.2).
ii) For T0 < t ≤ T observe that

ui(t; ui
0) = SP i(t)ui

0 = S(t − T0)u
i(T0; u

i
0) +

∫ t

T0

S(t − τ)P iui(τ ; ui
0) dτ.

Dropping momentarily the dependence in u1
0, u

2
0, we get

z(t) = S(t − T0)z(T0) +
∫ t

T0

S(t − τ)
(

P 1 − P 2
)

u2(τ) dτ +
∫ t

T0

S(t − τ)P 1z(τ) dτ.
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and then

‖z(t)‖γ′ ≤ M(T )‖z(T0)‖γ′ + K(T )‖P 1 − P 2‖α,β

∫ t

T0

(t − τ)−(γ′−β)‖u2(τ)‖α dτ+

+K(T )‖P 1‖α,β

∫ t

T0

(t − τ)−(γ′−β)‖z(τ)‖α dτ.

Now, by (4.5), u2 is bounded in Xα on [T0, T ] and then the second term above is
bounded by

K1(T )
(
∫ t

T0

(t − τ)−(γ′−β) dτ
)

‖P 1 − P 2‖L(Xα,Xβ) sup
[T0,T ]

‖u2(t)‖α

which, using (4.5), is bounded by

K2(T, T0)‖P
1 − P 2‖L(Xα,Xβ)‖u

2
0‖γ .

So we end up with

‖z(t)‖γ′ ≤ M(T )‖z(T0)‖γ′+K2‖P
1−P 2‖L(Xα,Xβ)‖u

2
0‖γ+K2‖P

1‖α,β

∫ t

T0

(t−τ)−(γ′−β)‖z(τ)‖α dτ

for all T0 ≤ t ≤ T .
Then using the singular Gronwall lemma, see Lemma 7.1.1, page 188, [6], we conclude

‖z(t)‖γ′ ≤ M2(T )
(

‖z(T0)‖γ′ + ‖P 1 − P 2‖L(Xα,Xβ)‖u
2
0‖γ

)

, T0 ≤ t ≤ T.

Using now the estimate for short times, (4.1), we get (4.3). In particular, if u1
0 = u2

0 =
u0 then we get (4.4).

Remark 4.2 Observe that if both semigroups SP 1(t) and SP 2(t) decay exponentially, we
actually get

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤
L(R0)e

−ωt

tγ′−γ
‖P 1 − P 2‖L(Xα,Xβ), for all 0 < t < ∞

for some ω > 0.
In the general case, if we replace P 1 and P 2 by P 1 − λI and P 2 − λI such that both

SP 1−λI(t) and SP 2−λI(t) decay exponentially we get

‖SP 1(t) − SP 2(t)‖γ,γ′ ≤
L(R0)e

ωt

tγ′−γ
‖P 1 − P 2‖L(Xα,Xβ), for all 0 < t < ∞

for some ω ∈ IR.

From the Theorem we get the following
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Corollary 4.3 Given P 1 ∈ L(Xα, Xβ), assume for some γ ∈ E(α) = (α − 1, α] we have

‖SP 1(t)‖γ,γ ≤ Meω0t, for all t > 0

for some M = M(γ) and ω0 ∈ IR.
Then for any ε > 0, if ‖P 1 − P 2‖L(Xα,Xβ) is sufficiently small we have for any γ′ ∈

E(α) = (α − 1, α]
‖SP 2(t)‖γ′,γ′ ≤ M ′e(ω0+ε)t, for all t > 0

for some M ′ depending on M, ω0, γ
′ε.

In particular, SP 1(t) decays exponentially, that is if ω0 < 0, then so does SP 2(t) if
‖P 1 − P 2‖L(Xα,Xβ) is sufficiently small.

Finally SP 1(t) and SP 2(t) satisfy the estimates (3.20) with ω = ω0 + ε.

Proof. First observe that from part iii) in Lemma 3.2 we have that the exponential
bounds for SP 1(t) and SP 2(t) are independent of γ; see (3.6) and (3.7). Therefore it is
enough to prove the result for the given γ ∈ E(α) = (α − 1, α].

Now for ε > 0 note that e−(ω0+ε)tSP 1(t) = SP 1−(ω0+ε)I(t) decays exponentially in Xγ.
In particular there exists t0 such that δ := ‖SP 1−(ω0+ε)I(t0)‖γ,γ < 1. Then, from Theorem
4.1, if ‖P 1−P 2‖L(Xα,Xβ) is sufficiently small we have δ′ := ‖SP 2−(ω0+ε)I(t0)‖γ,γ < 1. Then

the last part of part iii) in Lemma 3.2 implies that e−(ω0+ε)tSP 2(t) = SP 2−(ω0+ε)I(t) decays
exponentially in Xγ too and the result follows.

The estimates (3.20) with ω = ω0 + ε follows from part iv) in Lemma 3.2.

With this we can finally prove

Theorem 4.4 Assume

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1,

1

ε
XωεVε → V0, cc − Lr for some r > N − 1

and for any 1 < q < ∞, consider the semigroups Sm,m0,ε(t) and Sm,m0+V0(t) obtained in
Theorem 3.20 and in Definition 3.22.

Then for every

γ, γ′ ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
) γ′ ≥ γ,

and T > 0 we have that there exists C(ε) → 0 as ε → 0, such that

‖Smε,m0,ε,ε(t) − Sm,m0+V0(t)‖L(H2γ,q
bc

(Ω),H2γ′ ,q
bc

(Ω))
≤

C(ε)

tγ′−γ
, for all 0 < t ≤ T.

In particular, if q > N − 1, then there exists γ′ ∈ I(q) such that H2γ′,q
bc (Ω)) ⊂ Cβ(Ω)

for some β > 0 and the solutions of (1.3) converge to solutions of (1.4) uniformly in Ω.
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Proof. Note that is was proved in Lemma 2.5 in [5] that

Pε → P0 in L(Hs,q(Ω), H−σ,q(Ω))

where Pε is defined in (2.3) and P0 in (2.11). In the setting here this translates into

Pε → P0 in L(Hs,q
bc (Ω), H−σ,q

bc (Ω)).

Then the rest follows from Theorem 4.1.

Remark 4.5 In particular we can obtain again that the semigroups Sm,m0,ε(t) and Sm,m0+V0(t)
are order preserving. For this, note that taking C1 smooth mε, m0,ε and V0, the results
in [2] imply that the semigroups are order preserving. Then the convergence above shows
the same property for the limiting semigroups.

Remark 4.6 Note that after Theorems 3.20 and 4.4 we can consider problems of the type
(1.3) and (1.4) only assuming C1 regularity on the diffusion coefficient a(x).

Finally, about the optimal exponential bound for the semigroups Sm,m0,ε(t) we have
the following

Proposition 4.7 Assume

mε → m in Lp(Ω), p >
N

2
,

m0,ε → m0 in Lr(Γ), r > N − 1,

1

ε
XωεVε → V0, cc − Lr for some r > N − 1

and denote by λε
1 the first eigenvalue of the following eigenvalue problem











−div(a(x)∇ϕε) + c(x)ϕε = mε(x)ϕε + 1
ε
XωεVε(x)ϕε + λϕε in Ω

a(x)∂ϕε

∂~n
+ b(x)ϕε = m0,ε(x)ϕε on Γ

Bϕε = 0 on ∂Ω \ Γ.

i) We have that
λε

1 → λ0
1

which is the first eigenvalue of the limit eigenvalue problem










−div(a(x)∇ϕ) + c(x)ϕ = m(x)ϕ + λϕ in Ω,

a(x)∂ϕ
∂~n

+ b(x)ϕ = (m0(x) + V0(x))ϕ on Γ,
Bϕ = 0 on ∂Ω \ Γ.

ii) For sufficiently small ε and for any −µ < λ0
1 the semigroups Smε,m0,ε,ε(t) and Sm,m0+V0(t)

obtained in Theorem 3.20 and in Definition 3.22 satisfy that for any 1 < q < ∞ and for
every

γ ∈ I(q) := (−1 +
1

2q
, 1 −

1

2q′
)
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‖Smε,m0,ε,ε(t)u0‖H2γ,q
bc

(Ω) ≤ Mγe
µt‖u0‖H2γ,q

bc
(Ω), t > 0, u0 ∈ H2γ,q

bc (Ω)

and
‖Sm,m0+V0(t)u0‖H2γ,q

bc
(Ω) ≤ Mγe

µt‖u0‖H2γ,q
bc

(Ω), t > 0, u0 ∈ H2γ,q
bc (Ω)

with Mγ independent of ε. Consequently, there semigroups satisfy (2.13) and (3.24) for
such µ and constants independent of ε.

Proof. Note that the eigenvalue problems above are the ones associated with the gener-
ators of the semigroups Smε,m0,ε,ε(t) and Sm,m0+V0(t), which have only discrete spectrum.
Then part i) follows from Corollary 4.2 and Remark 4.3 in [5].

For part ii) note that the exponential bound of the semigroup using a lower bound
on the real part of the spectrum of the generator follows from Theorem 1.3.4 in [6]. This
combined with part i) and Lemma 3.2, gives the rest. Note that the result also follows
from Corollary 4.3.

5 Final results and remarks

Note that from Theorems 3.20 and 4.4 using standard techniques for semigroups, [6, 10,
3, 9], as well as the results in [2] it is easy to analyze the solutions of nonhomogeneous
problems like



















uε
t − div(a(x)∇uε) + c(x)uε = 1

ε
XωεVε(x)uε + 1

ε
Xωεfε(x, t) + g(x, t) in Ω

a(x)∂uε

∂~n
+ b(x)uε = j(x, t) on Γ

Buε = 0 on ∂Ω \ Γ
uε(0) = u0 in Ω

(5.1)
assuming

1

ε
XωεVε → V0, cc − Lr for some r > N − 1 (5.2)

and suitable conditions of the type

1

ε
Xωεfε(·, t) → f0(·, t), cc − Lr for some r > N − 1 (5.3)

for each t > 0. In such a case the limit problem reads



















ut − div(a(x)∇u) + c(x)u = g(x, t) in Ω
a(x)∂u

∂~n
+ b(x)u = V0(x)u + j(x, t) + f0(x, t) on Γ

Bu = 0 on ∂Ω \ Γ
u(0) = u0 in Ω.

(5.4)

Themain tool here would be the variations of constants formula. Details are left for the
reader.
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On the other hand, note that given V0 and f0 on Γ we can define Vε and fε extending
the functions V0 and f0(·, t) to ωε in the direction of the normal. That is, if z ∈ ωε then
z can be written in a unique way as z = x − σ~n(x), for some σ ∈ (0, ε). Therefore, we
define Vε(z) = V0(x) and fε(z, t) = f0(x, t). With this definition we may easily prove that
if V0 ∈ Lρ(Γ), f0(·, t) ∈ Lr(Γ), then (5.2), (5.3) hold.

In particular, in case the domain is not smooth, it may be difficult to give a meaning
to the boundary condition in (5.4), although (5.1) has a natural and simple variational
formulation not involving surface integrals or traces. Hence the limit functions of (5.1)
can be taken as proper way of defining solutions of (5.4) in such a case.

Finally, it is not difficult to see that all previous results can be carried out with minor
changes to the case in which the region ωε collapses to a regular orientable hyper–surface
Γ ⊂ Ω, not necessarily the boundary of the domain. In such a case, for the problem



















uε
t − div(a(x)∇uε) + c(x)uε = 1

ε
XωεVε(x)uε + 1

ε
Xωεfε(x, t) + g(x, t) in Ω

a(x)∂uε

∂~n
+ b(x)uε = j(x, t) on ∂ΩR

uε = 0 on ∂Ω
uε(0) = u0 in Ω

the limit problem reads



















ut − div(a(x)∇u) + c(x)u = V0(x)δΓu + f0(x, t)δΓ + g(x, t) in Ω
a(x)∂u

∂~n
+ b(x)u = j(x, t) on ∂ΩR

u = 0 on ∂ΩD

u(0) = u0 in Ω,

where we denote by f0δΓ and V0δΓu the functionals < f0δΓ, ϕ >=
∫

Γ
f0ϕ and < V0u, ϕ >=

∫

Γ
V0uϕ. Here we also denote by ∂ΩR and ∂ΩD a partition of ∂Ω where Robin and Dirichlet

type boundary condition are imposed, respectively.
Observe also that by taking test functions with support near points on Γ it is easy

to see that the limit problem is in fact a transmission problem across Γ, where the jump
condition reads

[u]Γ = 0, a(x)[
∂u

∂~n
]Γ − V0(x)u = f0(x, t), x ∈ Γ t > 0.

See [5] for a further discussion in the case of elliptic problems.
Last but not least, observe that as mentioned in Section 2 the results in this paper

apply to the case when the diffusion coefficient is a positive definite matrix instead of a
scalar coefficient. First order coefficients can be handled as well.
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